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ABSTRACT: Because climate change will increase the frequency and intensity of precipitation extremes and coastal

flooding, there is a clear need for an integrated hydrology and hydraulic system that has the ability to model the hydrologic

conditions over a long period and the flow dynamic representations of when and where the extreme hydrometeorological

events occur. This system coupling provides comprehensive information (flood wave, inundation extents, and depths) about

coastal flood events for emergency management and risk minimization. This study provides an integrated hydrologic and

hydraulic coupled modeling system that is based on the Coupled Routing and Excessive Storage (CREST) model and the

Australia National University-Geophysics Australia (ANUGA) model to simulate flood. Forced by the near-real-time

Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimates, this integrated modeling system was applied

during the 2017 Hurricane Harvey event to simulate the streamflow, the flood extent, and the inundation depth. The results

were compared with postevent high-water-mark survey data and its interpolated flood extent by the U.S. Geological Survey

and the Federal EmergencyManagementAgency flood insurance claims, as well as a satellite-based floodmap, theNational

Water Model (NWM), and the Fathom (LISFLOOD-FP) model simulated flood map. The proposed hydrologic and hy-

draulic model simulation indicated that it could capture 87% of all flood insurance claims within the study area, and the

overall error of water depth was 0.91m, which is comparable to the mainstream operational flood models (NWM

and Fathom).

SIGNIFICANCE STATEMENT: We wanted to provide a tool for local emergency response officials to visualize the

possible flood conditions in their region, because the heavy rainfall flood is likely becoming more frequent and more

intense, possibly as a result of climate change. The simulated flood information includes the water channel flowrate, two-

dimensional flood extent, and the inundation depth throughout the flooded area. The results proved that, with less data

requirement, the proposed tool can provide the comprehensive flood information, with accuracy of flood extent sim-

ulation comparable to mainstream flood models and acceptable inundation-depth simulation. We will keep working to

expand the capability of the framework from the real-time simulation to the 1-h lead-time prediction.

KEYWORDS: North America; Hurricanes; Coupled models; Hydrologic models; Model comparison; Model

evaluation/performance

1. Introduction

Flooding triggered by excessive precipitation is the second-

deadliest and most common natural hazard in the United States

and worldwide (Ashley and Ashley 2008; Barredo 2007; Benito

et al. 2004; Smith and Ward 1998), which accounts for 43% of

total natural disasters from 1995 to 2015 recorded by the United

Nations (Wallemacq et al. 2015). The Gulf Coast and the South

Atlantic Coast of the United States are profoundly affected by

extreme precipitation from tropical cyclones and their resulting

floods (Adhikari et al. 2010), which is responsible for around

25000 fatalities in theUnited States since 1942 (Rappaport 2000,

2014). For pluvial floods, the precipitation rate, duration, the

land use of the region, topography, and antecedent soil moisture

conditions are the main factors to determine the overall flood

severity (Brauer et al. 2020). Recent studies indicate that the

frequency and intensity of extreme rainfall and tropical cyclones

will likely increase (van Oldenborgh et al. 2018) and the prop-

agation of the cyclones will likely decrease due to the possible

impact from climate change (Kossin 2018). It is thus likely that

the future flood risk and its consequential socioeconomic dam-

age will escalate. On top of the changes in the tropical cyclone

characteristics, rising sea level in a warming climate can intensify

coastal flooding (Wing et al. 2019). There is a clear need for tools

that can facilitate the current and future flood risk mitigation.

One of those tools is an improved, real-time flood predic-

tion system, which supports multidisciplinary decision making

including but not limited to: first-responder preparedness,
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temporary flood defense planning, insurance budgeting, and

supply chain management. Flood prediction and inundation

mapping have been studied for over a century, and two tradi-

tional groups of research efforts have gained most of the at-

tention of the research community: observations and hydraulic

models (Teng et al. 2017). The observation methods include

groundmeasurements, surveys, and remote sensing technology

(Shen et al. 2019b,a; Syvitski and Brakenridge 2013). As re-

mote sensing technologies can identify the flood extent over a

vast area, while other observation methods can only provide

data at single points, flood mapping aided by remote sensing

has gained popularity in recent years. However, because of

limitations such as data latency, the observation-based re-

sults are more often used as an input or as a benchmark to

validate and calibrate hydrological and hydraulic models

(Teng et al. 2017).

Hydraulic models include one-dimensional, two-dimensional,

and three-dimensional methods that use the physical equations

and laws to describe fluid motion where the degree of com-

plexity varies. The one-dimensional hydraulic model is con-

sidered the most straightforward representation of floodplain

flow, as it simulates the open surface water flow with the as-

sumption that the water only flows in one direction. The

flow velocity is then averaged over the channel cross section

(Brunner 2016). The 2D model assume the water as a shallow

ditch, and no flow occurs vertically, and then the shallow-water

equation is solved from the depth-averaged Navier–Stokes

equations (Roberts et al. 2019). In some individual cases which

need detailed information for engineering solutions, such as

dam breaks, tsunamis, or embankment failures, 3D hydraulic

models are implemented. However, for most of the floodplain

analysis and simulation, the 2D shallow-water approximation

is considered adequate after proper model construction and

validation (Alcrudo 2004). The fully solved the 2D St. Venant

shallow-water equations using the finite-volume and finite-

element methods are considered to have a higher complexity

among the 2D hydraulic models (Bates and De Roo 2000).

The storage cell or the cellular automata approach by solving

Manning’s equation with finite-difference methods, such as

the ‘‘LISFLOOD-FP’’ model, was suggested to be a good

approximation to the physics-based model and the compu-

tation time was reduced by 30 times (Ghimire et al. 2013). It

was further tested to prove the method was as efficient as

other classes of models implementing HPC techniques (Bates

et al. 2010).

Integrating hydrologic model and hydraulic models has the

benefit of utilizing present-day computational resources to

model dynamic representations of extreme hydrometeoro-

logical events (Anselmo et al. 1996). A recent study (Tanaka

et al. 2018) has integrated three difference models: a dis-

tributed hydrological model called Geomorphology-Based

Hydrological Model (GBHM), a 1D hydraulic model named

Mike11, and a 2D hydraulic model called Local Inertial

Equation (LIE). The study found the integrated framework

yielded good agreement between with the observation data of

the stream discharge, as well as the lake water level over a 4-

yr span. It was able to simulate a significant flooding event in

2000 over the study area. The authors also indicated that the

framework could simulate sediment movement downstream

in the future research plan.

Since 2016, the Ensemble Framework For Flash Flood

Forecasting (EF5) integrated the Coupled Routing and Excess

Storage (CREST) distributed hydrological model, a 1D hy-

draulic model, with kinematic wave channel routing, to suc-

cessfully simulate multiple extreme precipitation-triggered

flash flooding events in Oklahoma City and Houston at a

continental-scale implementation (Flamig et al. 2020; Gourley

et al. 2017). Outside the United States, the CREST was cou-

pled with an 1D fully distributed linear reservoir routing

scheme and found success over a study in China (Shen et al.

2017). The NationalWater Center led an effort to integrate the

WRF-Hydro hydrologic model and the Height Above Nearest

Datum (HAND) inundation mapping method into the new

NationalWaterModel (NWM; Cohen et al. 2018). TheHAND

method performed a simulation of a 2016 Texas flooding event

with good agreement with remote sensing observations and

less computation cost (Zhang et al. 2018). A recent study by

(Wing et al. 2019), compared the flood-mapping performances

for Hurricane Harvey between NWM1HAND and Fathom, a

LISFLOOD-FP-based hydraulic modeling system that con-

tains all major hydrological and hydraulic components to de-

scribe the water dynamics. The study results indicated that

Fathom outperformed NWM1HAND according to all statis-

tical metrics and could better capture the pluvial and coastal

flooding phenomena. The public would greatly benefit from a

comprehensive and accurate flood extent and inundation-

depth predictions for tropical cyclone events to improve local

risk management.

A ‘‘grand challenge for hydrology’’ was raised by (Wood

et al. 2011) to provide hyper-resolution hydrological prediction

capacities to the public, as the society critically demands the

high spatial–temporal resolution forecasting for floods and

droughts. New remote sensing technology provides accurate

and high spatially and temporally resolved observations over

the globe, which helps to advance physics-based models for

atmospheric, hydrologic and hydraulic forecasting. However,

the remote sensing products are not error-free and these errors

in precipitation products can be further propagated to the

hydrologic and hydraulic modeling results (Hong et al. 2006);

therefore, the accuracy of the input precipitation data is crucial

for flood applications. The Multi-Radar Multi-Sensor system

(MRMS), which utilizes data from over 180 NEXRAD radars

and covers the conterminous United States at 1-km spatial

resolution with a 2-min update frequency (Zhang et al. 2016),

has shown more accuracy during Hurricane Harvey event than

did NASA’s Integrated Multisatellite Retrievals for GPM

(IMERG) v6 product and National Centers for Environmental

Prediction (NCEP) gridded gauge only precipitation production;

and has good agreement with the Harris County Flood Control

District (HCFCD) rain gauge data (Chen et al. 2020; Li et al.

2020). This study, again, usesHurricaneHarvey as the study case,

since it was considered a 100–500-yr flood event, which caused

the local streams’ return period reduced 20%–35% after the

event (Vu and Mishra 2019; McDonald and Naughton 2019).

The overarching goal of the study is to first introduce the newly

developed hydrology and hydraulic model CREST-inundation
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Mapping and Prediction (CREST-iMAP) as a latest addition

of the well-documented CREST hydrologic modeling family;

and to further test and compare this new coupled system with

some other the-state-of-the-art flood-mapping models in an

extreme storm event setting. Additionally, the physics-based

2D hydrological-hydraulic CREST-iMAPmodel provides ease

on scale-up implementation with less data preparation re-

quirement and streamflow-only calibration processes. More

specified objectives of this study are to 1) design and develop

the CREST-iMAP which couples the hydrologic and hydraulic

components, while bypassing the river channel data re-

quirement; 2) evaluate the flood extent by comparing the

modeling results with the observed U.S. Geological Survey

(USGS) flood map, satellite-based (SAR) flood map, Fathom

flood map, NWM1HAND flood map, and the Federal

Emergency Management Agency (FEMA) flood insurance

claims map for Hurricane Harvey, and 3) evaluate the flood

inundation depths between the USGS high-water marks

(HWMs), Fathom flood map, NWM1HAND flood map, and

CREST-iMAP simulated flood map using statistic methods.

This paper is organized as follows. Section 2 describes the

study area, data, the description of the CREST hydrologic

model and 1D hydraulic model, Fathom, and the evaluation

methods. Section 3 discusses the results of the intercompar-

ison of the flood maps from the USGS interpolation, SAR

data, the Fathom simulation, the NWM1HAND simulation,

and the CREST-iMAP-based simulation. Section 4 concludes

the study and proposes future directions.

2. Methods and data

a. Study area and data

Hurricane Harvey made the first landfall on northern San

Jose Island, Texas, on 26 August 2017, and moved along the

Texas Coast for almost 5 days before the second landfall on

30 August 2017 (Blake and Zelinsky 2018). Hurricane Harvey

poured over 1500mm of water on the Great Houston area

(Brauer et al. 2020). Figure 1 displays the Hurricane track, the

boundary of Houston, the Spring basin, major flowlines, and

the USGS HWMs within the Spring basin. The Spring basin,

located in the northwestern part of the Great Houston area,

was selected for this study. The Spring basin is among the

most impacted areas during Hurricane Harvey (National

Weather Service 2018). It has mixed land-cover types across

the basin (Chen et al. 2020), which was believed to be an

underperforming area by another study (Wing et al. 2019).

There are four major rivers within the Spring basin: Spring

Creek, Willow Creek, Little Cypress Creek, and Cypress

Creek, entering Lake Houston and 55 USGS HWM sites

measured for the Hurricane Harvey event. The HWM sites

are more concentrated along Cypress Creek and the south-

eastern part of the basin because the area has more urban

development.

The MRMS radar-based quantitative precipitation estimates

(QPE) were obtained from the Iowa Environmental Mesonet

NWS data archive (https://mesonet.agron.iastate.edu/nws/). The

15-min streamflow data of five stream gauges across the basin

from 1April to 3 September 2017were obtained from theUSGS

NationalWater Information System (https://waterdata.usgs.gov/

nwis). The hyper-resolution (10m) digital elevation model

(DEM) was obtained from USGS Earth Explorer (https://

earthexplorer.usgs.gov/). The 250-m-resolution hydrologically

conditioned DEM was obtained from HydroSHEDS (https://

www.hydrosheds.org/; Lehner et al. 2008). The 10-m-resolution

CREST parameters were derived and calculated using methods

described in Vergara et al. (2016) from the USGS Soil Survey

Geographic Database (SSURGO). The 1-km-resolution CREST

parameters were passed from the beginning phase of the

Flooded Locations and Simulated Hydrographs (FLASH)

project to input to the hydrological modeling portion of the

CREST-iMAP. The U.S. land-cover data were obtained from

Multi-Resolution Land Characteristics Consortium (MRLC;

https://www.mrlc.gov/), and it was extended to arrive at grid-

dedManning’s roughness coefficients as described in (Liu et al.

2019). The USGS HWM data and FEMA property claim data

during Hurricane Harvey were obtained from HydroShare

(https://hydroshare.org; Arctur et al. 2018). The USGS daily

potential evapotranspiration (PET) data were obtained from

FIG. 1. Study area showing Hurricane Harvey storm track, City of Houston Spring basin and its topography, and HWM locations.
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USGS Famine Early Warning Systems Network (FEWS NET;

https://earlywarning.usgs.gov/fews).

b. CREST inundation mapping and prediction (CREST-
iMAP) framework

CREST is a grid-based, distributed hydrological model that

was developed by the University of Oklahoma and NASA

Applied Science Team (Wang et al. 2011). The EF5 framework

later included CREST as one of the water balance modeling

cores and coupled it with the kinematic wave channel

routing method, and the framework can provide hydrolog-

ical simulation at continental and global scales (Clark et al.

2017). Researchers have adapted the EF5 framework for

high-resolution flash flood forecasting in the United States

(Flamig et al. 2020). It now serves as the backbone of

FLASH, which was transitioned to the NWS in November

2016 and has evolved the tools for operational flash flood

forecasting (Gourley et al. 2017). The NWS Weather Forecast

Offices (WFOs) have reported that having FLASH data were

extremely useful by allowing staff to focus in on threats and

upgrade warnings more rapidly and timely (National Weather

Service 2018). This study uses a modified EF5 framework from

the implemented version in the FLASH project, which is used as

water balance component of the CREST-iMAP. CREST is

coupled with the Australia National University and Geoscience

of Australia (ANUGA) hydraulic model (Nielson et al. 2005).

The ANUGA model was built on the basis of a finite-volume

method for solving the 2D shallow-water equation (Roberts

et al. 2019), to simulate the floodplain flow movement and as-

sume that water depth is much less than the water movements in

x and y directions (Teng et al. 2017). However, the ANUGA

model only simulates the 2D water-depth distribution and flow

velocity, while the water–soil and water–atmosphere interac-

tions are not considered in the modeling framework. Therefore,

an additional component of water balancing is needed to meet

that need.

In this study, the EF5-CREST model was one-way and off-

line coupled with the ANUGA model to comprehensively

provide flood information, including streamflow, flood extent,

and inundation depth. Figure 2 illustrates the schematic flow-

chart of CREST-iMAP coupling mechanics. CREST-iMAP

receives forcing precipitation data, such as radar/satellite QPE,

machine-learning modeled or numerically modeled quantita-

tive precipitation forecasts (QPF), or an interpolated rainfall

field. The hydrological model simulates and generates exces-

sive rainfall, soil moisture, and streamflow, where excessive

rainfall as well as soil moisture are further used to drive and set

the initial soil condition for the hydraulic model (ANUGA),

and the streamflow is the one-dimensional output from the

CREST-iMAP. The water balance module has 17 parame-

ters to describe the physical interactions among water, soil,

and air (Wang et al. 2011), whereas the hydraulic model has

only the Manning’s roughness coefficient that governs the

water flow (Roberts et al. 2019). The simulated streamflow is

the variable used to calibrate the model parameters based

on comparisons with USGS stream gauge records. The hy-

draulic model receives the excessive rainfall data field from

each time step and simulates two variables in a single raster

file to illustrate the flood extent and the flood inundation

depth to the end user.

The CREST-iMAP has a few key sciences that are em-

bedded in this model. First, the canopy interception is

simulated using the Canopy Interception Capacity method

(Dickinson et al. 1989), which is derived from the land-

cover data. The infiltration process is simulated using the

University of Washington Variable Infiltration Curve (VIC;

Liang et al. 1996a,b) model. The evapotranspiration and soil-

drying process is simulated by a decision-tree process described

in Wang et al. (2011), which is driven by the PET data. The

subsurface water routing is done in the one-dimensional fashion

using the 1D kinematic wave method to feedback to channel

streamflow (Lighthill and Whitham 1955), and not involved in

2D water routing. Only the excessive rainfall is left on the sur-

face for 2D water routing simulated by the St. Venant equation

to produce the overland flood. The sciences support the appli-

cation of CREST-iMAP to simulate the precipitation-triggered

flood events, whenET is not themajor contributing factor. Since

the finite-volume-method hydraulic model has high robustness

(Horritt and Bates 2002), the CREST-iMAP can bypass the

river channel data requirement and only the water balance pa-

rameters are designed to be calibrated.

In this study, the MRMS near-real-time QPE was input to

CREST-iMAP at 2-min temporal resolution. To imitate the

nested real-time operational scheme, the water balance mod-

ule calculates the excessive rainfall at 250-m resolution and

simulated streamflow on all water channels using 250-m DEM

and 1-km parameters, which were calibrated with five USGS

stream gauges described in (Chen et al. 2020), using DREAM

methods (Vrugt 2016; Vrugt et al. 2009). The calibrated ex-

cessive rainfall was then read by a hydraulic module at 2-min

FIG. 2. The schematic data flowchart of CREST-iMAP. One

component (specified in the boxes) becomes the input of another,

and arrows represent the data flow.
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temporal resolution, and the internal calculation time step is

10 s on an approximately 10 by 10m2 area triangular mesh. At

each steps of the coupled modeling, the calculation is done at

the optimal temporal–spatial resolutions for the stability and

efficiency purposes of each module, which are 250m and

15min for the water balance, as well as 10m and 10 s for hy-

draulic routing. Therefore, the 1-km-resolutionMRMSQPE is

first calculated into 250-m excessive rainfall field and then is

calculated to water depth and water fluxes at 10-m resolution.

The model output was extracted every 15min and further in-

terpolated to the 10-m-resolution raster files. For more accu-

rate simulation of the flooding impact of Hurricane Harvey,

the water balance module utilized a warmup period from

1 April to 25 August 2017 and coupled the simulation period

from 25 August to 3 September 2017. This approach is an at-

tempt to use the native DEMwith no manipulation and bypass

the detailed river channel information, which is not available at

all locations and problematic for an operational flood predic-

tion system (Orzech et al. 2011; Lejot et al. 2007; Merwade

et al. 2006). All flow direction and flow accumulation data were

derived from the original DEM and relied on its quality.

Therefore, CREST-iMAP can reduce the data requirement for

model applications relative to traditional 2D hydraulic mod-

eling (Brunner 2016). CREST-iMAP is designed to operate in

the real time and provide timely flood information; therefore,

the group of flood maps used in the comparison is from real-

time operational systems around the world.

c. Fathom model (LISFLOOD-FP)

Fathom-Global is a framework that combines multiple

continental-scale hydraulic model implementations (Wing

et al. 2017), among which was first described by (Sampson

et al. 2015). Fathom utilizes the LISFLOOD-FP as the com-

putational core, which solves the local inertial form of the

shallow-water equations using a 2D regular grid (de Almeida

and Bates 2013; Bates et al. 2010; Bates and De Roo 2000). In

this study, the Fathom-simulated flood map was generated

using the river discharge data as the forcing, which was the

USGS stream gauge observations at the related inflow points

in the stream network (Wing et al. 2019). The pluvial flood

was also considered by inputting the U.S. Weather Prediction

Center stage-IV rainfall data onto the grid cells. The infiltration

was considered using a simplified infiltration capacity method,

using the information from theHarmonizedWorld SoilDatabase

derived by amodifiedHortonian infiltration equation (Morin and

Benyamini 1977). The simulation also included levee informa-

tion, burned-in channels, and storm-surge simulation to capture

the multiple phenomena contributing to the Hurricane Harvey

flood at 10-m spatial resolution. These data are from an opera-

tional Fathom–U.S. version, which was built upon and updated

from a high-resolution global flood hazard model (Wing et al.

2019; Sampson et al. 2015), which continuously updates the flood

frequency analysis at all catchments in the world. The model was

functioning at the operational level to produce the flood map.

d. NWM coupled with HAND

As a part of the National Flood Interoperability Experiment

(Maidment 2017), the NOAANationalWater Center has been

exploring to couple the NWM and HAND to provide the flood

map and prediction. TheNWM is a specific configuration of the

WRF-Hydro model (Cohen et al. 2018), which was originally

developed as a land surface model to couple with the Weather

Research and Forecasting (WRF) Model (Gochis and Chen

2003). The NWM is based on the Noah-MP land surface model

and Muskingum 1D water routing (McCarthy 1939), which

emphasizes the energy flux and evapotranspiration process,

and uses Phillip’s equation to model the infiltration process

through conceptual three-layers soil (Niu et al. 2011; Schaake

et al. 1996). The simulated 1D flowrate is then fed into HAND

for inundation simulation. The HAND 2D flood modeling

method created a normalized HAND DEM from the original

DEM, which indicates the height of each grid above its nearest

flow channel. Then theNWM streamflow data at each drainage

reach is converted to the water stage long the channel grids by

reversing the flow-stage rating curve, and then any HAND

DEM grid values that is small than its nearest water channel

stage is considered ‘‘wet’’ and the inundation depth is equal to

the difference between the stage and the HAND DEM cell

value. The sciences of the NWM1HAND coupled scheme

suggest that themethod is designed to simulate the fluvial flood

only. This simple and conceptual approach was executed at

one-third arc second spatial resolution for every day during

and after Hurricane Harvey (28 August–3 September 2017). A

maximum extent flood simulation was generated based on the

daily inundation data and was downloaded from HydroShare

platform (Arctur et al. 2018). NWM v1.1 was deployed for

operational uses to NCEP from late 2016 until October 2017,

when the v1.2 was delivered. These data are based on the

NWM v1.1, which includes over 49 000 catchments, and the

Harris County, Texas, area had high positive bias but high

correlation coefficient when compared with USGS during an

official assessment during the NWM training seminar in 2017

(Gochis et al. 2017).

e. Reference flood data

Following Hurricane Harvey, the USGS field team visited

multiple impact areas and collected over 2000 HWMs with the

official guidelines (Feaster and Koenig 2017; Koenig et al.

2016). The HWM ground survey was conducted by measuring

the GPS elevation of the mud, debris, and water stain lines on

the side of buildings, trees, fences, poles, and other structures.

(Watson et al. 2018) utilized over 2000 HWMs and 47 peak

stage heights and interpolated them into a flooded water

plain at 19 locations, aided by a LiDAR-derived DEM with

1.4–3.0-m resolution. This interpolation result was believed to

be the best reconstruction of the flood extent and has been used

as a benchmark in another study (Wing et al. 2019). However,

this dataset is not error free, and (Watson et al. 2018) indicated

the uncertainty ranged from 0.01 to 0.55m at specific points.

These data were obtained from the USGS data release (https://

doi.org/10.5066/F7VH5N3N).

Remote sensing technology provide another potential ref-

erence for flood extent because there are clear synthetic ap-

erture radar (SAR) images on 29 and 30 August 2017 that

capture the Hurricane Harvey and its flooding impact on

Harris County (Shen et al. 2019a). Because satellite data can
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objectively illuminate Earth’s surface, they theoretically should

be the unbiased ground truth for the flood extent, but only

if the information can be extracted accurately. The flood

map produced from the Radar-Produced Inundation Diary

(RAPID) system in this study was retrieved from Sentinel-1

SAR data captured on 29 August 2017, and then went

through the binary classification, morphological processing,

compensation, and machine learning correction. The auto-

mated algorithms to detect water surface through vegeta-

tions and urban structure are not available when RAPID

was put online, soRAPID is not capable to extract floodmaps in

dense metropolitan and heavily vegetated area. The RAPID

system was calibrated using a 2016 flooding event in China be-

fore processing the data for Hurricane Harvey. The data were

obtained from theUniversity of ConnecticutHydrometeorology

and Hydrologic Remote Sensing Group RAPID flood map

archive (https://rapid-nrt-flood-maps.s3.amazonaws.com/

index.html#RAPID_Archive_Flood_Maps/20170829/flooding_

S1A_IW_GRDH_1SDV_20170829T002645_20170829T002710_

018131_01E74D_3220/). RAPID is an operational system

designed to quickly extract flood maps from SAR images

during or after the event; therefore, many newer water iden-

tification technologies are not incorporated in the system. The

RAPID flood map was interpolated using the Floodwater

Depth Estimation Tool, version 2 (FwDET v2; Cohen et al.

2019), to generate the flood depth by subtracting the eleva-

tion surface created by the edge of the flooded polygon by

the 10-m-resolution DEM.

f. Statistical metrics

Two levels of statistical tests were used in the evaluation.

First, the reference data from section 2e were used to test the

extent to which the models capture the spatial patterns of

flooding. In this case, we used standard binary pattern mea-

sures listed in Table 1.

The probability of detection (POD) measures the model’s

ability to capture the referencing flood extent or the proportion

of the reference flood extent that was replicated by the model.

The false alarm rate (FAR) reflects the model’s tendency to

overestimate the reference flood extent or the proportion of

the modeled flood area that was classified as positive while the

reference data were classified as negative. The critical success

index (CSI) measures performance of the model estimates

relative to the reference flood extent, which accounts for both

overprediction and underprediction by the model.

Second, the 50 USGS HWMs in the study area were used as

the reference to calculate the difference produced by the

model simulations. Twometrics were used (Table 1), where the

correlation coefficient measures the relationships between

model-simulated inundation depth andHWMs and root-mean-

square error (RMSE) measures the average magnitude of the

errors from the model simulations. These traditional statistics

test if the models capture the pattern and accurate water

inundation depth.

3. Results and discussion

a. Flood extent evaluation

A display of flood maps from the USGS mapping, SAR data

interpolation, NWM1HAND, Fathom (LISFLOOD-FP), and

CREST-iMAP are listed in Fig. 3. To visually compare all

datasets, all data were cropped within the USGS HWMs’ inter-

polation boundaries, and the maximum values of each pixel

in the modeled time series were taken from the model outputs.

For ease of observing, only inundation-depth pixel values that

are larger than 1 in. (0.0254m) was displayed in Fig. 3.

The satellite-based flood mapping was not able to capture

most of the flood inundation as compared with other methods.

Therefore, the satellite-based floodmapping failed in this study

area and will not be included for further analysis. However, the

SAR data captures a small area of flood at the southwestern

corner of the boundary (green line), which indicates that the

SAR and RAPID system performs slightly better at the ranch

area instead ofmountainous or urban area. TheNWM1HAND

method has a very limited flood extent but better than the

satellite-based flood mapping. Especially, the NWM1HAND

method could not capture the large flooded area at the upper

stream of the Cypress Creek (lower-left corner of the study

TABLE 1. List of statistical metrics used in this study. Variables F and f represent the model simulation results of binary classifi-

cation and values, respectively;R and r represent the reference data of binary classification and values, respectively; 1 and 0 mean positive

(wet) and negative (dry) classifications; and n and N represent sample index and a total number of samples.

Name Equationa Value range Perfect value

Probability of detection
POD5

F1 ^ R1

F1 ^ R1 1F0 ^ R1

0, 1 1

False alarm rate
FAR5

F1 ^ R0

F1 ^ R0 1F0 ^ R0

0, 1 0

Critical success index
CSI5

F1 ^ R1

F1 ^ R1 1F0 ^ R1 1F1 ^ R0

0, 1 1

Correlation coefficient

CC5
�
N

n51

(fn 2 f )(rn 2 r)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

n51

(fn 2 f )2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

n51

(rn 2 r)2

s
21, 1 1

Root-mean-square error
RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

n51

(fn 2 rn)
2

s
0, 1‘ 0
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boundary), whereUSGSmapping, Fathom andCREST-iMAP

all found inundation in the area. The USGS mapping only

captures the fluvial flooding along the three main streams

(Spring Creek, Cypress Creek, Little Cypress Creek). In con-

trast, the two modeling methods can capture more inundation

along smaller channels. The major flooding occurred at the

southwestern side of the basin, which was captured by the two

simulations and the USGS interpolation. However, by

looking at the flood-depth distribution at subplots and the

color scales of each map, the simulated inundation depths

are very different as the Fathom simulation output appears

to have more ‘‘red’’ pixels than the other methods and its

maximum inundation depth reaches over 10 m. Note that the

NWM1HAND method produced eight ‘‘noise’’ pixels that

have values around 11 m while the majority of the pixel

values are less than 0.4 m, which can be caused by the DEM

error or during the data processing. One observation of the

different flood maps is that the maximum flood depth ranges

from 0.4 to .10 m, where the USGS mapping, Fathom, and

CREST-iMAP all include the channel water depth while

SAR and NWM1HAND do not. The variation of flood

depth can be caused by the different DEM treatments by

each automated operating system, even though all auto-

mated methods use the DEM from the USGS National

Elevation Dataset. Fathom has river channels ‘‘burned’’

into the DEM, whereas CREST-iMAP uses the native DEM

and SAR flood map interpolation and NWM1HAND uses

ditch-filled DEM. The benchmark USGS flood map uses

its own lidar-detected data as DEM, which is unique and

different from all other methods. A more detailed flood-

depth analysis will be done in section 3b.

Assuming the USGS flood mapping is the ground truth and

is set as the benchmark of the study and that only over 1 in.

(2.54 cm) of water depth is considered as an inundated pixel,

the comparison results are listed in Table 2. The previous study

indicated that Spring Creek and the San Jacinto River area

were one of the poor-performance basins (Wing et al. 2019).

This study confirmed the performance where the POD indi-

cates 72%of the areamatched the benchmark, and theCSI was

only 0.49. The CREST-iMAP has a comparable performance,

where the POD was 72%, and CSI was 0.45. Both models

produced false alarms, and their FARs were over 40%, which

was caused by the large underrepresentation of pluvial flooding

between the two main streams according to the benchmark

USGS flood map (Fig. 4. Blue area). Relative to the other two

models, the NWM1HAND approach dramatically under-

performed, giving only 22% detection, and the CSI is only 0.21.

FIG. 3. The flood extent and depth of (a) USGS inundation mapping, (b) SAR-image flood mapping, (c) NWM1HAND, (d) the Fathom

model, and (e) the CREST-iMAP model, and their flood-depth distributions.

TABLE 2. The comparison results of NWM1HAND, Fathom

(LISFLOOD-FP), and CREST-iMAP with the benchmark USGS

flood mapping. The POD, FAR, and CSI were described in

section 2 and Table 1, with the threshold of 1 in. (2.54 cm).

Name NWM1HAND Fathom CREST-iMAP

POD 0.22 0.72 0.72

FAR 0.13 0.40 0.45

CSI 0.21 0.49 0.45
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Because the NWM1HAND simulated flooded area is very

small, the FAR is as low as 13%.

Figure 4 demonstrates the spatial distribution of the match

between the model simulations and the USGS flood map. The

NWM1HAND shows clear underestimation where only the

center lines of the two main downstreams appear to have in-

undations, and all the upper streams flooding are not captured.

Since NWM-HAND only considers the overbank flow, there is

no pluvial flood showing between two main streams, which

leads to the low FAR value. Besides the large false alarms from

Fathom and CREST-iMAP models, the general performance

over two major streams appears to be good. CREST-iMAP

performed better than Fathom on Spring Creek (northern

stream), and Fathom performed better at the upper part of

Cypress Creek (southern stream) than CREST-iMAP. Both

model simulations did not fully capture the east end of the

upper Cypress Creek flood, where Cypress City is located

(29.988N, 95.748W). The CREST-iMAP simulation showed a

more inundated area in the eastern portion of the study area,

which is more developed and lower in elevation. Fathom

simulation showed more flooding at the middle and upper

streams of the study area, especially along the flowlines and

small water channels.

It is reasonable to raise speculations about how under-

representative the USGS flood mapping was for Hurricane

Harvey. First, the method of the USGS flood mapping does

not consider any physical water movement nor hydrological

cycling dynamics. Second, both models showed a significant

amount of false alarms in the area between two major rivers,

which indicates the benchmark data might be underrepresenting.

To investigate further, we counted the number of FEMA

flood/water damage insurance claims that landed on the

‘‘wet’’ pixels of different flood maps. The results are illus-

trated in Fig. 5.

The flood/water damage insurance claims included water

damages, flood, water-related electrical damages, and property

rupture or cracks, with a total of 10,459 cases within the study

area. Since it is difficult to determine how much water could

cause water damage, any pixel has value more than 0m was

considered as a wet area for all datasets. The satellite-based

flood map is very sparse, so there were only 107 (1.0%) claims

collocated with the flood extent. The NWM1HAND is proven

to underestimate the flooding by Hurricane Harvey, and there

were only 1692 (16.2%) claims inside the simulated flood ex-

tent. For the USGS flood map, there were 4610 (44.1%) claims

inside its flood extent approximation, which is mainly aligning

along the two main river channels, as the USGS interpolation

heavily focused on the fluvial flooding. The Fathom simulated

flood extent has number of claims that is comparable to USGS

mapping of 4284 (41.0%). However, the claims associated with

flooded pixels in the Fathom simulation are visually more

widespread when compared with the USGS map, where it

showsmanymore claims between the twomain rivers (Fig. 5c).

We speculate that since no model simulation showed as much

flood inundation area at the City of Cypress as the USGS

mapping, concentrated flood/water damage claims (1896 out of

FIG. 4. Maps displaying the intersection of the (a) NWM1HAND, (b) Fathom, and (c) CREST-iMAP flood extents with those from the

USGS flood mapping.
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10 459 claims) were partially counted in the Fathom simula-

tion. Therefore, even though Fig. 5c visually shows more

widespread claims, the USGS flood map has a higher count of

claims associated to inundated pixels. The CREST-iMAP

simulated flood extent contains the most claims of 9085

(86.9%), which indicates the benefit of the full pluvial flood

simulation scheme can better capture the extreme precipi-

tation triggered flood inundation. From Fig. 5e, the claim

points are well spread across the study area, and especially

in the northern river, Spring Creek, the model simulation

captured more flood/water damage insurance claims than all

other methods.

Overall, it is difficult to conclude which flood prediction

method is better than others or which methods can better be

used as the benchmark data that represent the ground truth

during the event. In theory, the satellite-based (SAR) flood

map should have provided the ‘‘ground truth’’ because the data

were derived from the snapshot when Sentinel-1 passed over

the area on 29 August 2017 (Shen et al. 2019a). According to

the CREST-iMAP simulated results, the study area had the

most wet pixels at 1145 UTC 29 August 2017 during Hurricane

Harvey, which is consistent with the date of the peak USGS

gauged and EF5 simulated streamflow in a previous study

(Chen et al. 2020). However, the SAR flood map shows the

SAR and RAPID method only captures very small flood in-

undation at the southwestern ranches of the study area. As the

water detection through vegetation and urban buildings from

SAR data is not available for an automated system like

RAPID, the lack of flood extent detection exposes the limi-

tation of the satellite-based automated flood-mapping system

when detecting through large objects is not available. The

USGS flood map has been used as the benchmark in other

studies, but it is unrealistic to have no inundation away from

the river channels, and only less than half (44.1%) of the flood

insurance claims landed within its flood extent.

The NWM1HAND method underperforms, but the data

were generated by NWM v1.1, and, as of today, the model has

developed to v2.0 and v2.1, which we believe should have

better performance now. However, this NWM1HAND is still

limited to the stage-flow conversion, DEM manipulation, and

other systematic errors (Johnson et al. 2019). The Fathom- and

CREST-iMAP-simulated flood extents showed promising re-

sults that can capture the pluvial flood. However, Fathom’s

simulation of flood extent captures less inundation at the

downstream of the basin and around Spring Creek, which leads

to fewer insurance cases within its flood extent (41%) relative

to USGSmapping and CREST-iMAP simulation. The Fathom

system uses the return period of the streams as themain forcing

to the model, and the infiltration capacity method might un-

dermine the effects of the overland flow and subsurface flow.

Meanwhile, LISFLOOD-FP uses local inertial method to

simplify the St. Venant shallow-water equation, which requires

individual flood surveyed flood extent for each catchment for

calibration to reach optimal result, but it is hard to achieve for a

FIG. 5. The filed FEMA flood/water damage insurance claims that land within the ‘‘wet’’ area from each flood-mapping source:

(a)USGSfloodmapping, (b) satellite-based flood extent, (c) NWM1HAND, (d) Fathommodel simulation, and (e) CREST-iMAPmodel

simulation.
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continental scale, automated operational flood model (Horritt

and Bates 2002).

The CREST-iMAP shows the broadest coverage over in-

surance claims in the basin (801 %). At the same time, the

FAR (45%) is similar to the Fathom simulation (FAR5 40%)

when compared with the USGS flood map, which means that

the CREST-iMAP simulation has an amount of overestima-

tion that is comparable to the other modeling approach in this

study. Therefore, it is reasonable speculation that the CREST-

iMAP simulation can cover the majority of the flood insurance

claim is due to the better description of the water movements

during Hurricane Harvey, by using the fully solved shallow-

water equation instead of the simplified local inertial form in

Fathom or a conceptual interpolation used in HAND. The

CREST-iMAP uses the 2-min MRMS QPE as the model

forcing data, which contains errors that can propagate through

the flood simulations and it is not treated in this study as a

hypothetical automated operating test. Both Fathom and

CREST-iMAP do not represent the mid- and upper Cypress

Creek flood very well, relative to the USGS floodmap, which is

where the city of Cypress is located. This shows a certain de-

gree of inability of simulating urban flooding by automated

flood modeling, since Cypress was heavily flooded during

Hurricane Harvey according to news reporting and social

media posts.

The flood extent analysis shows that the CREST-iMAP

model at its current setting has a result that is comparable to

the operational Fathom system, in comparison with the

benchmark USGS flood map, which also matches well with

FEMA flood insurance claims. The flood extent from SAR

and NWM1HAND are shown to be underrepresentative.

b. Flood inundation-depth analysis

The model simulated inundation-depth values were extracted

from the same locations as the 50 HWM sites in the study area.

Figure 6 shows the water depths at each location from different

data sources.

The first observation from the result is that the Fathom-

simulated flood depth has much higher extreme values relative

to other sources, which is consistent with the results in Fig. 3

where Fathom has more red area and its inundation value has

the largest range among all flood approximations. The error

distribution of Fathom simulation also indicates that there are

multiple pixels overestimate the flood depth by 2–4m. Second,

considering NWM1HAND does not have pixel values at 31

locations, the rest of the locations appears to slightly overes-

timate the flood depth, with two extreme values (error . 7m)

that are beyond the range of the figure. Third, no flood inun-

dation data source aligns perfectly with the USGS HWM

measurement, and CREST-iMAP is the only model that limits

the majority of the error within62m. Therefore, no modeling

method can approximate the actual ground survey in this study,

which leaves room for much improvement in the field. The

statistical analysis was done to analyze and compare the sim-

ulated data with the USGS HWM as the reference (Table 3).

The results indicate that all flood inundation-depth ap-

proximations have poor correlation with the USGS HWM

records (,0.51) and about 1m of error. Despite the fact that

there are 31 no-value pixels extracted at HWM locations from

the NWM1HAND simulation result, its depth is the most

correlated with the ground survey with CC of 0.51 but is the

least accurate with RMSE of 1.81m. The CREST-iMAPmodel

simulation has a less-poor performance, with CC of 0.36 and

RMSE of 0.91m. The Fathom simulation yields an RMSE of

1.26 and CC of 0.12, which indicates that the water-depth

simulation is not valid. The scatterplot (Fig. 7) shows the

concentration of Fathom simulation results close to the

upper-left corner, which indicates that the majority of over-

estimation occurs when the inundation water depth is less

than 1m. All flood simulation methods yield overestimation

when the HWM value is 0 (a very small flood inundation),

and Fathom tends to have greater flood-depth values than

CREST-iMAP and NWM1HAND. Majority of the overes-

timation of CREST-iMAP occur at the locations with 0 value

HWMs and many underestimations occur at the locations

when HWMs are between 0.5 and 1.5m.

Overall, the correlations between the USGS HWM and

different flood-mapping approximations were low, where there

is no clear pattern along the isoline in this scatterplot. It is

partially due to the inaccuracy of the flood inundation simu-

lations, as well as the USGS HWM measurements, which is

based on human observation and claims the uncertainty is

between 60.015m (0.05 ft) and 60.12m (0.4 ft) (Feaster and

Koenig 2017). Another reason could be the location informa-

tion of the HWM sites is not accurate enough, which the USGS

HWM dataset provide the longitude and latitude coordinates

at accuracy of five digits after the decimal point. However, all

flood simulation models were operated under hyper-resolution

(3–10m). Therefore, only 1025 arc-degree accuracy is not

enough to precisely extract the right pixel from the modeled

flood inundation result, which could cause the inconsistency

that we found this study. The previous Hurricane Harvey

study (Wing et al. 2019) also argued that the Fathom model

error relative to HWM was close to 1.19m and justified that

the ;1-m model deviation from the HWM was acceptable

and informative to flood prevention and preparations for lo-

cal first responders. This study provides another flood inun-

dation approximation method that marginally improved the

error (RMSE) to ;0.9m.

4. Conclusions

Validation of a flood map for a single event is challeng-

ing because error-free reference data that comprehensively

reflect a flood event are not available. This is especially true in

this study, and none of the flood maps can be proven to be the

unbiased ground truth. This study also provides a model

application that couples the hydrological and hydraulic

model using excessive rainfall as the media dataset. The

results prove that the CREST-iMAP framework can well

capture the flood extent and the spatial pattern of the flood

extent, which is comparable to current automated opera-

tional flood-monitoring systems in the world. However, the

error (RMSE) is approximately 0.9 m using the traditional

statistical method. This study compares the five different

sources of flood inundation approximations for the flood
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induced by Hurricane Harvey in Spring Basin located in

northern Harris County: RAPID extraction from SAR data,

USGS HWM and stream stage interpolation, NWM1HAND

model simulation, Fathom (LISFLOOD-FP) model simulation,

and CREST-iMAP model simulation. The main conclusions of

this study are 1) the CREST-iMAP modeling methods can

capture the flood extent under extreme precipitation as well, if

not better than, as other sources, 2) satellite-based (SAR) flood

observation and NWM1HAND model simulation severely

underperformed during Hurricane Harvey and HAND only

considers the fluvial flood, and 3) this study cannot conclude

which is the most reliable method to capture the flood inunda-

tion during the extreme event because no method can com-

pletely reproduce the flood extent and the inundation-depth

errors are not negligible.

This study provides a hydrological and hydraulic coupled

approach to simulate flooding with fewer data requirements

in an automated and operational setup using the CREST-

iMAP framework, which yields acceptable results during the

Hurricane Harvey extreme precipitation-driven flood event.

The current case study has 41 million computing pixels and a

computational speed of 0.02 s per time step (10 s) using 2 nodes

(40 computing cores), but a more systematic computational

efficiency study for the CREST-iMAP will be needed in the

future. Even though the simulated flood depth is not perfect,

there is plenty of decision-supportive information to poten-

tially establish a high-resolution flood prediction system based

on the weather radar network for not only southeastern Texas

but along all high-precipitation intensity and flood-prone areas

across the globe, because the model is physics based, is com-

patible with global data, and is built with a parameter region-

alization module. Furthermore, because the CREST-iMAP

framework can comprehensively provide streamflow, flood

extent, flood inundation depth, and soil moisture outputs, it

can easily connect to other interdisciplinary building blocks

TABLE 3. Traditional statistical analysis of the HWM1HAND

simulation, Fathom (LISFLOOD-FP) simulation, and CREST-

iMAP simulation. The CC and RMSE were described in section 2

and Table 1. Here, NA indicates no available data.

Name NWM1HAND Fathom CREST-iMAP

CC 0.51 0.12 0.38

RMSE (m) 1.81 1.26 0.91

No. of NAs 31 1 1

FIG. 6. The (a) flood inundation depth at 50 USGSHWM locations, and (b) error distributions

of the NWM1HAND simulation, Fathom simulation, and CREST-iMAP simulation.
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(e.g., insurance, supply chain, and utility management) to

further quantify the consequential socioeconomic impacts

from any flood event. Ultimately, a decision-supporting smart

system can be built upon reliable flood predictions to guide

public safety decision-making during flood hazards.
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